M img/Centrifugal_pump_volute_Richards_1894.png => _static/img/Centrifugal_pump_volute_Richards_1894.png +0 -0
M img/andrew-shea-door-sign.png => _static/img/andrew-shea-door-sign.png +0 -0
M img/banner.png => _static/img/banner.png +0 -0
M img/exterior-schematic.jpg => _static/img/exterior-schematic.jpg +0 -0
M img/interior-schematic.jpg => _static/img/interior-schematic.jpg +0 -0
M img/mit-building-e25.jpg => _static/img/mit-building-e25.jpg +0 -0
M img/mit-study-map.png => _static/img/mit-study-map.png +0 -0
M img/model-inside.jpg => _static/img/model-inside.jpg +0 -0
M img/model-wide.jpg => _static/img/model-wide.jpg +0 -0
M img/revolver-enclosure-schematic.jpg => _static/img/revolver-enclosure-schematic.jpg +0 -0
M img/revolver-schematic.jpg => _static/img/revolver-schematic.jpg +0 -0
M img/schutrum-door-use-rates.png => _static/img/schutrum-door-use-rates.png +0 -0
M img/schutrum-infiltration-v-rpm.png => _static/img/schutrum-infiltration-v-rpm.png +0 -0
M img/schutrum-infiltration-v-traffic.png => _static/img/schutrum-infiltration-v-traffic.png +0 -0
M img/schutrum-seal-leakage.png => _static/img/schutrum-seal-leakage.png +0 -0
M img/swinger-schematic.jpg => _static/img/swinger-schematic.jpg +0 -0
M img/tc-min-crack-leakage.png => _static/img/tc-min-crack-leakage.png +0 -0
M img/tc-min-entrance-coefficients.png => _static/img/tc-min-entrance-coefficients.png +0 -0
M img/tc-min-infiltration-v-pressure.png => _static/img/tc-min-infiltration-v-pressure.png +0 -0
M img/wind-pressure-coefficient-short.png => _static/img/wind-pressure-coefficient-short.png +0 -0
M img/wind-pressure-coefficient-tall.png => _static/img/wind-pressure-coefficient-tall.png +0 -0
M experiment.rst +13 -13
@@ 2,7 2,7 @@
The experiment
##############
-.. image:: img/model-wide.jpg
+.. image:: _static/img/model-wide.jpg
:alt: Wide view of revolving door model
:width: 200
@@ 21,9 21,9 @@ You can run an (incomplete) in-browser d
Construction
============
-.. image:: img/exterior-schematic.jpg
+.. image:: _static/img/exterior-schematic.jpg
:alt: Exterior door position schematic
- :target: img/exterior-schematic.jpg
+ :target: _static/img/exterior-schematic.jpg
:width: 300
This model is approximately one foot on each side, built mostly from medium-density fiberboard,
@@ 36,14 36,14 @@ Interior
Each wall is a 12 by 12 inch square, making the building slightly oblong. Inside, two sensors lie
six and seven inches from the interior front wall.
-.. image:: img/model-inside.jpg
+.. image:: _static/img/model-inside.jpg
:alt: Interior model picture
- :target: img/model-inside.jpg
+ :target: _static/img/model-inside.jpg
:height: 200
-.. image:: img/interior-schematic.jpg
+.. image:: _static/img/interior-schematic.jpg
:alt: Interior model schematic
- :target: img/interior-schematic.jpg
+ :target: _static/img/interior-schematic.jpg
:height: 200
Two light bulbs provide heat for the building; they remain on throughout the experiment so a
@@ 58,9 58,9 @@ For the revolving door enclosure, the mo
door wings were 3 by 7 feet each, this dictates 1/18 scale, making each wing 2 inches by 4 and 5/8
inches.
-.. image:: img/revolver-enclosure-schematic.jpg
+.. image:: _static/img/revolver-enclosure-schematic.jpg
:alt: Revolving door enclosure schematic
- :target: img/revolver-enclosure-schematic.jpg
+ :target: _static/img/revolver-enclosure-schematic.jpg
:width: 300
On each side of the enclosure, a 90-degree opening allows virtual traffic through the door. The
@@ 81,9 81,9 @@ Revolving door and axle
The model uses a four-winged revolving door, made by slotting two pieces of fiberboard together.
-.. image:: img/revolver-schematic.jpg
+.. image:: _static/img/revolver-schematic.jpg
:alt: Revolving door schematic
- :target: img/revolver-schematic.jpg
+ :target: _static/img/revolver-schematic.jpg
:width: 300
The slightly wider slot in the bottom of the door pieces allows the door to couple to its drive
@@ 102,9 102,9 @@ Swinging door
The swinging door is the same size as one wing of the revolving door, matching the swinging doors
installed beside the revolving door in the real-world office building used as a reference.
-.. image:: img/swinger-schematic.jpg
+.. image:: _static/img/swinger-schematic.jpg
:alt: Swinging door schematic
- :target: img/swinger-schematic.jpg
+ :target: _static/img/swinger-schematic.jpg
:width: 300
A small notch at the bottom of the swinging door leaves room for the servo arm to glue to the
M index.rst +8 -2
@@ 2,12 2,18 @@
The great revolving door hoax
#############################
+.. toctree::
+ :maxdepth: 1
+
+ experiment
+ research/index
+
Imagine, before you, two doors lie in wait, anticipating your choice. One, simple and familiar,
but adorned by an admonishment to use the other. Imagine you do not know how your choice may affect
the world. Is the revolving door an entertaining carousel offering an easy option to save energy or
a rotary menace? Every day, this conundrum faces literally some people, maybe more.
-.. image:: img/andrew-shea-door-sign.png
+.. image:: _static/img/andrew-shea-door-sign.png
:alt: Sign with an arrow that claims "revolving doors use 8 times less energy"
:target: http://www.smalldisruptions.com/revolving_door.html#.UuVUAbROl_I
:width: 600
@@ 56,7 62,7 @@ enough to feeling a draft.
And notice the peculiar similarity between a revolving door and a centrifugal pump:
-.. image:: img/Centrifugal_pump_volute_Richards_1894.png
+.. image:: _static/img/Centrifugal_pump_volute_Richards_1894.png
:alt: Schematic of the rotary blades in a centrifugal pump
:target: http://en.wikipedia.org/wiki/File:Centrifugal_pump_volute_Richards_1894.png
:height: 200
M README.rst => readme.md +25 -26
@@ 1,44 1,43 @@
-######
-Readme
-######
+# The great revolving door hoax #
The whole project compiles to a static Web site, viewable by running ``serve.py`` from the root
directory. Tested on Kubuntu and Windows.
Visit the project site at http://revolvingdoorhoax.org.
-Dependencies
-============
+## Dependencies ##
+
+Runs on [Python 2], quick start:
-Runs on `Python 2`_, quick start::
-
- virtualenv --python=python2 venv-rdx
+```
+virtualenv --python=python2 venv-rdx
+```
Depending on what you want to do, these dependencies may be required:
-- `Python 2`_, for everything except code that runs on Arduino
-- Docutils_, to generate the site, easiest installed through Sphinx_
-- pySerial_, to control Arduino
-- `Arduino IDE`_, to upload Arduino software. Alternatively, Ino_ may do the trick, but I haven't
+* [Python 2], for everything except code that runs on Arduino
+* [Docutils], to generate the site, easiest installed through [Sphinx]
+* [pySerial], to control Arduino
+* [Arduino IDE], to upload Arduino software. Alternatively, [Ino] may do the trick, but I haven't
tested with it.
-- `Adafruit Motor Shield V2 library`_, to control the stepper motor
+* [Adafruit Motor Shield V2 library], to control the stepper motor
JavaScript libraries
====================
These ship with the project, but I list here to give credit where it's due.
-- jQuery_
-- Skulpt_
-- ASCIIMathML_
+* [jQuery]
+* [Skulpt]
+* [ASCIIMathML]
-.. _Python 2: https://www.python.org/
-.. _Docutils: http://docutils.sourceforge.net/
-.. _Sphinx: http://sphinx-doc.org/latest/install.html
-.. _pySerial: http://pyserial.sourceforge.net/
-.. _Arduino IDE: http://arduino.cc/en/main/software
-.. _Ino: http://inotool.org/
-.. _Adafruit Motor Shield V2 library: https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/library-reference
-.. _jQuery: http://jquery.com/
-.. _Skulpt: http://www.skulpt.org/
-.. _ASCIIMathML: http://mathcs.chapman.edu/~jipsen/mathml/asciimath.html
+[Python 2]: https://www.python.org/
+[Docutils]: http://docutils.sourceforge.net/
+[Sphinx]: http://sphinx-doc.org/latest/install.html
+[pySerial]: http://pyserial.sourceforge.net/
+[Arduino IDE]: http://arduino.cc/en/main/software
+[Ino]: http://inotool.org/
+[Adafruit Motor Shield V2 library]: https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/library-reference
+[jQuery]: http://jquery.com/
+[Skulpt]: http://www.skulpt.org/
+[ASCIIMathML]: http://mathcs.chapman.edu/~jipsen/mathml/asciimath.html
M research.rst => research/index.rst +14 -8
@@ 2,6 2,12 @@
Existing research
#################
+.. toctree::
+ :maxdepth: 1
+
+ mit-study
+ mit-study-distilled
+
Estimating revolving door efficiency ought to be a straightforward empirical experiment. It would go
something like this:
@@ 63,24 69,24 @@ That review presented Schutrums original
empirical research. For the less mathematicall inclined, Schutrum's work reduces to several grainy
but useful charts, which the MIT study used for its infiltration estimates:
-.. image:: img/schutrum-infiltration-v-traffic.png
+.. image:: ../_static/img/schutrum-infiltration-v-traffic.png
:alt: Infiltration due to motion of revolving door by people per hour
- :target: img/schutrum-infiltration-v-traffic.png
+ :target: ../_static/img/schutrum-infiltration-v-traffic.png
:height: 400
-.. image:: img/schutrum-seal-leakage.png
+.. image:: ../_static/img/schutrum-seal-leakage.png
:alt: Infiltration due to revolving door seals by pressure and door orientation
- :target: img/schutrum-seal-leakage.png
+ :target: ../_static/img/schutrum-seal-leakage.png
:height: 400
-.. image:: img/schutrum-door-use-rates.png
+.. image:: ../_static/img/schutrum-door-use-rates.png
:alt: Operating time and average revolutions per minut by traffic rate
- :target: img/schutrum-door-use-rates.png
+ :target: ../_static/img/schutrum-door-use-rates.png
:height: 400
-.. image:: img/schutrum-infiltration-v-rpm.png
+.. image:: ../_static/img/schutrum-infiltration-v-rpm.png
:alt: Infiltration due to motion of door by revolutions per minute
- :target: img/schutrum-infiltration-v-rpm.png
+ :target: ../_static/img/schutrum-infiltration-v-rpm.png
:height: 400
The first chart allows for estimating air infiltration as a function of traffic rate, when traffic
M mit-study-distilled.rst => research/mit-study-distilled.rst +21 -21
@@ 30,16 30,16 @@ infiltration through swinging door seals
from B1. Total revolving door leakage can be assumed the sum of leakage from all doors, that is, the
two in building E25, seen on figure A1.*
-.. figure:: img/schutrum-seal-leakage.png
+.. figure:: ../_static/img/schutrum-seal-leakage.png
:alt: Schutrum's revolving door seal leakage chart
- :target: img/schutrum-seal-leakage.png
+ :target: ../_static/img/schutrum-seal-leakage.png
:height: 400
Figure B1: infiltration through new and worn door seals (door not revolving)
-.. figure:: img/mit-study-map.png
+.. figure:: ../_static/img/mit-study-map.png
:alt: MIT campus map with location of doors studies
- :target: img/mit-study-map.png
+ :target: ../_static/img/mit-study-map.png
:height: 400
Figure A1: map of MIT campus with building numbers. Revolving doors on campus are represented by
@@ 53,24 53,24 @@ door can be directly obtained from figur
operating time fraction need to be estimated first, using figure B4. Then, with the estimated
averaged revolving speed, the infiltration can be obtained from figure B5.
-.. figure:: img/schutrum-infiltration-v-traffic.png
+.. figure:: ../_static/img/schutrum-infiltration-v-traffic.png
:alt: Schutrum's graph of infiltration by people per hour
- :target: img/schutrum-infiltration-v-traffic.png
+ :target: ../_static/img/schutrum-infiltration-v-traffic.png
:height: 400
Figure B3: infiltration through manually operated revolving door (air movement 35 fpm indoors,
air leakages past door seals deducted)
-.. figure:: img/schutrum-door-use-rates.png
+.. figure:: ../_static/img/schutrum-door-use-rates.png
:alt: Schutrum's operating time and speed by people per hour
- :target: img/schutrum-door-use-rates.png
+ :target: ../_static/img/schutrum-door-use-rates.png
:height: 400
Figure B4: Operating time and averaged rpm vs. traffic rate of manually operated revolving door
-.. figure:: img/schutrum-infiltration-v-rpm.png
+.. figure:: ../_static/img/schutrum-infiltration-v-rpm.png
:alt: Schutrum's graph of infiltration by revolutions per minute
- :target: img/schutrum-infiltration-v-rpm.png
+ :target: ../_static/img/schutrum-infiltration-v-rpm.png
:height: 400
Figure B5: infiltration vs. rpm and indoor-outdoor air temperature difference (air leakages
@@ 90,9 90,9 @@ and applicable as the weather stripping
10 inches long and 0.5 inches wide, *presumably a sum for all swinging doors in E25, not per door.
Figure B2 gives infiltration through swinging door seals:*
-.. figure:: img/tc-min-crack-leakage.png
+.. figure:: ../_static/img/tc-min-crack-leakage.png
:alt: Min's visible crack leakage chart
- :target: img/tc-min-crack-leakage.png
+ :target: ../_static/img/tc-min-crack-leakage.png
:height: 400
Figure B2: infiltration through door cracks (door not revolving, *probably a typo*)
@@ 107,16 107,16 @@ nothing in the information given for rev
assume swinging door calculations are also uncorrected.* Once the entrance coefficient is known, the
infiltration due to the swinging of the door can be estimated using figure B8.
-.. figure:: img/tc-min-entrance-coefficients.png
+.. figure:: ../_static/img/tc-min-entrance-coefficients.png
:alt: Min's graph of entrance coefficient by people per hour
- :target: img/tc-min-entrance-coefficients.png
+ :target: ../_static/img/tc-min-entrance-coefficients.png
:height: 400
Figure B6: Entrance coefficients for single-bank entrances
-.. figure:: img/tc-min-infiltration-v-pressure.png
+.. figure:: ../_static/img/tc-min-infiltration-v-pressure.png
:alt: Min's graph of infiltration by pressure differential
- :target: img/tc-min-infiltration-v-pressure.png
+ :target: ../_static/img/tc-min-infiltration-v-pressure.png
:height: 400
Figure B8: (Swing door) entrance infiltration for various pressure differentials and traffic
@@ 134,7 134,7 @@ Stack difference is a function of indoor
the building and the height of the door. *We can assume the door is 7 feet tall, and estimate height
of E25 as 70 feet from this picture:*
-.. image:: img/mit-building-e25.jpg
+.. image:: ../_static/img/mit-building-e25.jpg
:alt: Picture of building E25
:target: http://en.wikipedia.org/wiki/File:MIT_Whitaker_College.jpg
:height: 400
@@ 190,17 190,17 @@ C3: Wind pressure (inches of water)
Wind speed, ```"mph"```. *The average wind speed for the month, from table D1. No correction
indicated for wind pressure being proportional to the square of wind speed.*
-.. figure:: img/wind-pressure-coefficient-tall.png
+.. figure:: ../_static/img/wind-pressure-coefficient-tall.png
:alt: Wind pressure coefficients for tall buildings
- :target: img/wind-pressure-coefficient-tall.png
+ :target: ../_static/img/wind-pressure-coefficient-tall.png
:height: 400
Figure B9: Local pressure coefficients (```C_p * 100```) for tall buildings with varying wind
direction.
-.. figure:: img/wind-pressure-coefficient-short.png
+.. figure:: ../_static/img/wind-pressure-coefficient-short.png
:alt: Wind pressure coefficients for low-rise buildings
- :target: img/wind-pressure-coefficient-short.png
+ :target: ../_static/img/wind-pressure-coefficient-short.png
:height: 400
Figure B10: Local pressure coefficients for low-rise buildings with varying wind direction.
M mit-study.rst => research/mit-study.rst +0 -0