rev: 21c5e6d2f665d0e8b4ff917a51b664c895dab2ed tukan/src/tukan/city.cpp -rw-r--r-- 19.4 KiB View raw Log this file
21c5e6d2f665 — Leonard Ritter * renamed project from Liminal to Tukan 2 years ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
// Copyright (c) 2011 Google, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
// CityHash, by Geoff Pike and Jyrki Alakuijala
//
// This file provides CityHash64() and related functions.
//
// It's probably possible to create even faster hash functions by
// writing a program that systematically explores some of the space of
// possible hash functions, by using SIMD instructions, or by
// compromising on hash quality.


#include "tukan/city.h"

#include <utility>
#include <algorithm>
#include <string.h>  // for memcpy and memset

typedef std::pair<uint64, uint64> uint128;

inline uint64 Uint128Low64(const uint128& x) { return x.first; }
inline uint64 Uint128High64(const uint128& x) { return x.second; }

using namespace std;

static uint64 UNALIGNED_LOAD64(const char *p) {
  uint64 result;
  memcpy(&result, p, sizeof(result));
  return result;
}

static uint32 UNALIGNED_LOAD32(const char *p) {
  uint32 result;
  memcpy(&result, p, sizeof(result));
  return result;
}

// Hash function for a byte array.
uint128 CityHash128(const char *s, size_t len);

// Hash function for a byte array.  For convenience, a 128-bit seed is also
// hashed into the result.
uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed);

// Hash function for a byte array.  Most useful in 32-bit binaries.
uint32 CityHash32(const char *buf, size_t len);

// Hash 128 input bits down to 64 bits of output.
// This is intended to be a reasonably good hash function.
inline uint64 Hash128to64(const uint128& x) {
  // Murmur-inspired hashing.
  const uint64 kMul = 0x9ddfea08eb382d69ULL;
  uint64 a = (Uint128Low64(x) ^ Uint128High64(x)) * kMul;
  a ^= (a >> 47);
  uint64 b = (Uint128High64(x) ^ a) * kMul;
  b ^= (b >> 47);
  b *= kMul;
  return b;
}


#ifdef WIN32

#include <stdlib.h>
#define bswap_32(x) _byteswap_ulong(x)
#define bswap_64(x) _byteswap_uint64(x)

#elif defined(__APPLE__)

// Mac OS X / Darwin features
#include <libkern/OSByteOrder.h>
#define bswap_32(x) OSSwapInt32(x)
#define bswap_64(x) OSSwapInt64(x)

#elif defined(__NetBSD__)

#include <sys/types.h>
#include <machine/bswap.h>
#if defined(__BSWAP_RENAME) && !defined(__bswap_32)
#define bswap_32(x) bswap32(x)
#define bswap_64(x) bswap64(x)
#endif

#else

#include <byteswap.h>

#endif

#ifdef WORDS_BIGENDIAN
#define uint32_in_expected_order(x) (bswap_32(x))
#define uint64_in_expected_order(x) (bswap_64(x))
#else
#define uint32_in_expected_order(x) (x)
#define uint64_in_expected_order(x) (x)
#endif

#if !defined(LIKELY)
#if HAVE_BUILTIN_EXPECT
#define LIKELY(x) (__builtin_expect(!!(x), 1))
#else
#define LIKELY(x) (x)
#endif
#endif

static uint64 Fetch64(const char *p) {
  return uint64_in_expected_order(UNALIGNED_LOAD64(p));
}

static uint32 Fetch32(const char *p) {
  return uint32_in_expected_order(UNALIGNED_LOAD32(p));
}

// Some primes between 2^63 and 2^64 for various uses.
static const uint64 k0 = 0xc3a5c85c97cb3127ULL;
static const uint64 k1 = 0xb492b66fbe98f273ULL;
static const uint64 k2 = 0x9ae16a3b2f90404fULL;

// Magic numbers for 32-bit hashing.  Copied from Murmur3.
static const uint32_t c1 = 0xcc9e2d51;
static const uint32_t c2 = 0x1b873593;

// A 32-bit to 32-bit integer hash copied from Murmur3.
static uint32 fmix(uint32 h)
{
  h ^= h >> 16;
  h *= 0x85ebca6b;
  h ^= h >> 13;
  h *= 0xc2b2ae35;
  h ^= h >> 16;
  return h;
}

static uint32 Rotate32(uint32 val, int shift) {
  // Avoid shifting by 32: doing so yields an undefined result.
  return shift == 0 ? val : ((val >> shift) | (val << (32 - shift)));
}

#undef PERMUTE3
#define PERMUTE3(a, b, c) do { std::swap(a, b); std::swap(a, c); } while (0)

static uint32 Mur(uint32 a, uint32 h) {
  // Helper from Murmur3 for combining two 32-bit values.
  a *= c1;
  a = Rotate32(a, 17);
  a *= c2;
  h ^= a;
  h = Rotate32(h, 19);
  return h * 5 + 0xe6546b64;
}

static uint32 Hash32Len13to24(const char *s, size_t len) {
  uint32 a = Fetch32(s - 4 + (len >> 1));
  uint32 b = Fetch32(s + 4);
  uint32 c = Fetch32(s + len - 8);
  uint32 d = Fetch32(s + (len >> 1));
  uint32 e = Fetch32(s);
  uint32 f = Fetch32(s + len - 4);
  uint32 h = len;

  return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h)))))));
}

static uint32 Hash32Len0to4(const char *s, size_t len) {
  uint32 b = 0;
  uint32 c = 9;
  for (int i = 0; i < len; i++) {
    signed char v = s[i];
    b = b * c1 + v;
    c ^= b;
  }
  return fmix(Mur(b, Mur(len, c)));
}

static uint32 Hash32Len5to12(const char *s, size_t len) {
  uint32 a = len, b = len * 5, c = 9, d = b;
  a += Fetch32(s);
  b += Fetch32(s + len - 4);
  c += Fetch32(s + ((len >> 1) & 4));
  return fmix(Mur(c, Mur(b, Mur(a, d))));
}

uint32 CityHash32(const char *s, size_t len) {
  if (len <= 24) {
    return len <= 12 ?
        (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len)) :
        Hash32Len13to24(s, len);
  }

  // len > 24
  uint32 h = len, g = c1 * len, f = g;
  uint32 a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2;
  uint32 a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2;
  uint32 a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2;
  uint32 a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2;
  uint32 a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2;
  h ^= a0;
  h = Rotate32(h, 19);
  h = h * 5 + 0xe6546b64;
  h ^= a2;
  h = Rotate32(h, 19);
  h = h * 5 + 0xe6546b64;
  g ^= a1;
  g = Rotate32(g, 19);
  g = g * 5 + 0xe6546b64;
  g ^= a3;
  g = Rotate32(g, 19);
  g = g * 5 + 0xe6546b64;
  f += a4;
  f = Rotate32(f, 19);
  f = f * 5 + 0xe6546b64;
  size_t iters = (len - 1) / 20;
  do {
    uint32 a0 = Rotate32(Fetch32(s) * c1, 17) * c2;
    uint32 a1 = Fetch32(s + 4);
    uint32 a2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2;
    uint32 a3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2;
    uint32 a4 = Fetch32(s + 16);
    h ^= a0;
    h = Rotate32(h, 18);
    h = h * 5 + 0xe6546b64;
    f += a1;
    f = Rotate32(f, 19);
    f = f * c1;
    g += a2;
    g = Rotate32(g, 18);
    g = g * 5 + 0xe6546b64;
    h ^= a3 + a1;
    h = Rotate32(h, 19);
    h = h * 5 + 0xe6546b64;
    g ^= a4;
    g = bswap_32(g) * 5;
    h += a4 * 5;
    h = bswap_32(h);
    f += a0;
    PERMUTE3(f, h, g);
    s += 20;
  } while (--iters != 0);
  g = Rotate32(g, 11) * c1;
  g = Rotate32(g, 17) * c1;
  f = Rotate32(f, 11) * c1;
  f = Rotate32(f, 17) * c1;
  h = Rotate32(h + g, 19);
  h = h * 5 + 0xe6546b64;
  h = Rotate32(h, 17) * c1;
  h = Rotate32(h + f, 19);
  h = h * 5 + 0xe6546b64;
  h = Rotate32(h, 17) * c1;
  return h;
}

// Bitwise right rotate.  Normally this will compile to a single
// instruction, especially if the shift is a manifest constant.
static uint64 Rotate(uint64 val, int shift) {
  // Avoid shifting by 64: doing so yields an undefined result.
  return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
}

static uint64 ShiftMix(uint64 val) {
  return val ^ (val >> 47);
}

static uint64 HashLen16(uint64 u, uint64 v) {
  return Hash128to64(uint128(u, v));
}

static uint64 HashLen16(uint64 u, uint64 v, uint64 mul) {
  // Murmur-inspired hashing.
  uint64 a = (u ^ v) * mul;
  a ^= (a >> 47);
  uint64 b = (v ^ a) * mul;
  b ^= (b >> 47);
  b *= mul;
  return b;
}

static uint64 HashLen0to16(const char *s, size_t len) {
  if (len >= 8) {
    uint64 mul = k2 + len * 2;
    uint64 a = Fetch64(s) + k2;
    uint64 b = Fetch64(s + len - 8);
    uint64 c = Rotate(b, 37) * mul + a;
    uint64 d = (Rotate(a, 25) + b) * mul;
    return HashLen16(c, d, mul);
  }
  if (len >= 4) {
    uint64 mul = k2 + len * 2;
    uint64 a = Fetch32(s);
    return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul);
  }
  if (len > 0) {
    uint8 a = s[0];
    uint8 b = s[len >> 1];
    uint8 c = s[len - 1];
    uint32 y = static_cast<uint32>(a) + (static_cast<uint32>(b) << 8);
    uint32 z = len + (static_cast<uint32>(c) << 2);
    return ShiftMix(y * k2 ^ z * k0) * k2;
  }
  return k2;
}

// This probably works well for 16-byte strings as well, but it may be overkill
// in that case.
static uint64 HashLen17to32(const char *s, size_t len) {
  uint64 mul = k2 + len * 2;
  uint64 a = Fetch64(s) * k1;
  uint64 b = Fetch64(s + 8);
  uint64 c = Fetch64(s + len - 8) * mul;
  uint64 d = Fetch64(s + len - 16) * k2;
  return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d,
                   a + Rotate(b + k2, 18) + c, mul);
}

// Return a 16-byte hash for 48 bytes.  Quick and dirty.
// Callers do best to use "random-looking" values for a and b.
static pair<uint64, uint64> WeakHashLen32WithSeeds(
    uint64 w, uint64 x, uint64 y, uint64 z, uint64 a, uint64 b) {
  a += w;
  b = Rotate(b + a + z, 21);
  uint64 c = a;
  a += x;
  a += y;
  b += Rotate(a, 44);
  return make_pair(a + z, b + c);
}

// Return a 16-byte hash for s[0] ... s[31], a, and b.  Quick and dirty.
static pair<uint64, uint64> WeakHashLen32WithSeeds(
    const char* s, uint64 a, uint64 b) {
  return WeakHashLen32WithSeeds(Fetch64(s),
                                Fetch64(s + 8),
                                Fetch64(s + 16),
                                Fetch64(s + 24),
                                a,
                                b);
}

// Return an 8-byte hash for 33 to 64 bytes.
static uint64 HashLen33to64(const char *s, size_t len) {
  uint64 mul = k2 + len * 2;
  uint64 a = Fetch64(s) * k2;
  uint64 b = Fetch64(s + 8);
  uint64 c = Fetch64(s + len - 24);
  uint64 d = Fetch64(s + len - 32);
  uint64 e = Fetch64(s + 16) * k2;
  uint64 f = Fetch64(s + 24) * 9;
  uint64 g = Fetch64(s + len - 8);
  uint64 h = Fetch64(s + len - 16) * mul;
  uint64 u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9;
  uint64 v = ((a + g) ^ d) + f + 1;
  uint64 w = bswap_64((u + v) * mul) + h;
  uint64 x = Rotate(e + f, 42) + c;
  uint64 y = (bswap_64((v + w) * mul) + g) * mul;
  uint64 z = e + f + c;
  a = bswap_64((x + z) * mul + y) + b;
  b = ShiftMix((z + a) * mul + d + h) * mul;
  return b + x;
}

uint64 CityHash64(const char *s, size_t len) {
  if (len <= 32) {
    if (len <= 16) {
      return HashLen0to16(s, len);
    } else {
      return HashLen17to32(s, len);
    }
  } else if (len <= 64) {
    return HashLen33to64(s, len);
  }

  // For strings over 64 bytes we hash the end first, and then as we
  // loop we keep 56 bytes of state: v, w, x, y, and z.
  uint64 x = Fetch64(s + len - 40);
  uint64 y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
  uint64 z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
  pair<uint64, uint64> v = WeakHashLen32WithSeeds(s + len - 64, len, z);
  pair<uint64, uint64> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
  x = x * k1 + Fetch64(s);

  // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
  len = (len - 1) & ~static_cast<size_t>(63);
  do {
    x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
    y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
    x ^= w.second;
    y += v.first + Fetch64(s + 40);
    z = Rotate(z + w.first, 33) * k1;
    v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
    w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
    std::swap(z, x);
    s += 64;
    len -= 64;
  } while (len != 0);
  return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z,
                   HashLen16(v.second, w.second) + x);
}

uint64 CityHash64WithSeed(const char *s, size_t len, uint64 seed) {
  return CityHash64WithSeeds(s, len, k2, seed);
}

uint64 CityHash64WithSeeds(const char *s, size_t len,
                           uint64 seed0, uint64 seed1) {
  return HashLen16(CityHash64(s, len) - seed0, seed1);
}

// A subroutine for CityHash128().  Returns a decent 128-bit hash for strings
// of any length representable in signed long.  Based on City and Murmur.
static uint128 CityMurmur(const char *s, size_t len, uint128 seed) {
  uint64 a = Uint128Low64(seed);
  uint64 b = Uint128High64(seed);
  uint64 c = 0;
  uint64 d = 0;
  signed long l = len - 16;
  if (l <= 0) {  // len <= 16
    a = ShiftMix(a * k1) * k1;
    c = b * k1 + HashLen0to16(s, len);
    d = ShiftMix(a + (len >= 8 ? Fetch64(s) : c));
  } else {  // len > 16
    c = HashLen16(Fetch64(s + len - 8) + k1, a);
    d = HashLen16(b + len, c + Fetch64(s + len - 16));
    a += d;
    do {
      a ^= ShiftMix(Fetch64(s) * k1) * k1;
      a *= k1;
      b ^= a;
      c ^= ShiftMix(Fetch64(s + 8) * k1) * k1;
      c *= k1;
      d ^= c;
      s += 16;
      l -= 16;
    } while (l > 0);
  }
  a = HashLen16(a, c);
  b = HashLen16(d, b);
  return uint128(a ^ b, HashLen16(b, a));
}

uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed) {
  if (len < 128) {
    return CityMurmur(s, len, seed);
  }

  // We expect len >= 128 to be the common case.  Keep 56 bytes of state:
  // v, w, x, y, and z.
  pair<uint64, uint64> v, w;
  uint64 x = Uint128Low64(seed);
  uint64 y = Uint128High64(seed);
  uint64 z = len * k1;
  v.first = Rotate(y ^ k1, 49) * k1 + Fetch64(s);
  v.second = Rotate(v.first, 42) * k1 + Fetch64(s + 8);
  w.first = Rotate(y + z, 35) * k1 + x;
  w.second = Rotate(x + Fetch64(s + 88), 53) * k1;

  // This is the same inner loop as CityHash64(), manually unrolled.
  do {
    x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
    y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
    x ^= w.second;
    y += v.first + Fetch64(s + 40);
    z = Rotate(z + w.first, 33) * k1;
    v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
    w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
    std::swap(z, x);
    s += 64;
    x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
    y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
    x ^= w.second;
    y += v.first + Fetch64(s + 40);
    z = Rotate(z + w.first, 33) * k1;
    v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
    w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
    std::swap(z, x);
    s += 64;
    len -= 128;
  } while (LIKELY(len >= 128));
  x += Rotate(v.first + z, 49) * k0;
  y = y * k0 + Rotate(w.second, 37);
  z = z * k0 + Rotate(w.first, 27);
  w.first *= 9;
  v.first *= k0;
  // If 0 < len < 128, hash up to 4 chunks of 32 bytes each from the end of s.
  for (size_t tail_done = 0; tail_done < len; ) {
    tail_done += 32;
    y = Rotate(x + y, 42) * k0 + v.second;
    w.first += Fetch64(s + len - tail_done + 16);
    x = x * k0 + w.first;
    z += w.second + Fetch64(s + len - tail_done);
    w.second += v.first;
    v = WeakHashLen32WithSeeds(s + len - tail_done, v.first + z, v.second);
    v.first *= k0;
  }
  // At this point our 56 bytes of state should contain more than
  // enough information for a strong 128-bit hash.  We use two
  // different 56-byte-to-8-byte hashes to get a 16-byte final result.
  x = HashLen16(x, v.first);
  y = HashLen16(y + z, w.first);
  return uint128(HashLen16(x + v.second, w.second) + y,
                 HashLen16(x + w.second, y + v.second));
}

uint128 CityHash128(const char *s, size_t len) {
  return len >= 16 ?
      CityHash128WithSeed(s + 16, len - 16,
                          uint128(Fetch64(s), Fetch64(s + 8) + k0)) :
      CityHash128WithSeed(s, len, uint128(k0, k1));
}

#ifdef __SSE4_2__
#include <citycrc.h>
#include <nmmintrin.h>

// Requires len >= 240.
static void CityHashCrc256Long(const char *s, size_t len,
                               uint32 seed, uint64 *result) {
  uint64 a = Fetch64(s + 56) + k0;
  uint64 b = Fetch64(s + 96) + k0;
  uint64 c = result[0] = HashLen16(b, len);
  uint64 d = result[1] = Fetch64(s + 120) * k0 + len;
  uint64 e = Fetch64(s + 184) + seed;
  uint64 f = 0;
  uint64 g = 0;
  uint64 h = c + d;
  uint64 x = seed;
  uint64 y = 0;
  uint64 z = 0;

  // 240 bytes of input per iter.
  size_t iters = len / 240;
  len -= iters * 240;
  do {
#undef CHUNK
#define CHUNK(r)                                \
    PERMUTE3(x, z, y);                          \
    b += Fetch64(s);                            \
    c += Fetch64(s + 8);                        \
    d += Fetch64(s + 16);                       \
    e += Fetch64(s + 24);                       \
    f += Fetch64(s + 32);                       \
    a += b;                                     \
    h += f;                                     \
    b += c;                                     \
    f += d;                                     \
    g += e;                                     \
    e += z;                                     \
    g += x;                                     \
    z = _mm_crc32_u64(z, b + g);                \
    y = _mm_crc32_u64(y, e + h);                \
    x = _mm_crc32_u64(x, f + a);                \
    e = Rotate(e, r);                           \
    c += e;                                     \
    s += 40

    CHUNK(0); PERMUTE3(a, h, c);
    CHUNK(33); PERMUTE3(a, h, f);
    CHUNK(0); PERMUTE3(b, h, f);
    CHUNK(42); PERMUTE3(b, h, d);
    CHUNK(0); PERMUTE3(b, h, e);
    CHUNK(33); PERMUTE3(a, h, e);
  } while (--iters > 0);

  while (len >= 40) {
    CHUNK(29);
    e ^= Rotate(a, 20);
    h += Rotate(b, 30);
    g ^= Rotate(c, 40);
    f += Rotate(d, 34);
    PERMUTE3(c, h, g);
    len -= 40;
  }
  if (len > 0) {
    s = s + len - 40;
    CHUNK(33);
    e ^= Rotate(a, 43);
    h += Rotate(b, 42);
    g ^= Rotate(c, 41);
    f += Rotate(d, 40);
  }
  result[0] ^= h;
  result[1] ^= g;
  g += h;
  a = HashLen16(a, g + z);
  x += y << 32;
  b += x;
  c = HashLen16(c, z) + h;
  d = HashLen16(d, e + result[0]);
  g += e;
  h += HashLen16(x, f);
  e = HashLen16(a, d) + g;
  z = HashLen16(b, c) + a;
  y = HashLen16(g, h) + c;
  result[0] = e + z + y + x;
  a = ShiftMix((a + y) * k0) * k0 + b;
  result[1] += a + result[0];
  a = ShiftMix(a * k0) * k0 + c;
  result[2] = a + result[1];
  a = ShiftMix((a + e) * k0) * k0;
  result[3] = a + result[2];
}

// Requires len < 240.
static void CityHashCrc256Short(const char *s, size_t len, uint64 *result) {
  char buf[240];
  memcpy(buf, s, len);
  memset(buf + len, 0, 240 - len);
  CityHashCrc256Long(buf, 240, ~static_cast<uint32>(len), result);
}

void CityHashCrc256(const char *s, size_t len, uint64 *result) {
  if (LIKELY(len >= 240)) {
    CityHashCrc256Long(s, len, 0, result);
  } else {
    CityHashCrc256Short(s, len, result);
  }
}

uint128 CityHashCrc128WithSeed(const char *s, size_t len, uint128 seed) {
  if (len <= 900) {
    return CityHash128WithSeed(s, len, seed);
  } else {
    uint64 result[4];
    CityHashCrc256(s, len, result);
    uint64 u = Uint128High64(seed) + result[0];
    uint64 v = Uint128Low64(seed) + result[1];
    return uint128(HashLen16(u, v + result[2]),
                   HashLen16(Rotate(v, 32), u * k0 + result[3]));
  }
}

uint128 CityHashCrc128(const char *s, size_t len) {
  if (len <= 900) {
    return CityHash128(s, len);
  } else {
    uint64 result[4];
    CityHashCrc256(s, len, result);
    return uint128(result[2], result[3]);
  }
}

#endif