bc573d93d1ce — Chris Cannam a month ago
Add SLEEF support
5 files changed, 386 insertions(+), 41 deletions(-)

M Makefile
M README.md
A => build/Makefile.linux.sleef
M src/FFT.cpp
M test/TestFFT.cpp
M Makefile +1 -0
@@ 7,6 7,7 @@ 
 #  -DHAVE_IPP         Intel's Integrated Performance Primitives are available
 #  -DHAVE_VDSP        Apple's Accelerate framework is available
 #  -DHAVE_FFTW3       The FFTW library is available
+#  -DHAVE_SLEEF       The SLEEF library is available
 #  -DHAVE_KISSFFT     The KissFFT library is available
 #  -DUSE_BUILTIN_FFT  Compile the built-in FFT code (which is not bad)
 #

          
M README.md +21 -18
@@ 4,8 4,8 @@ bqfft
 
 A small library wrapping various FFT implementations for some common
 audio processing use cases. Contains a built-in implementation and
-wrappers for FFTW3, KissFFT, Intel IPP, and Apple vDSP. Suitable for
-Windows, Mac, Linux, and mobile platforms.
+wrappers for FFTW3, SLEEF, KissFFT, Intel IPP, and Apple vDSP.
+Suitable for Windows, Mac, Linux, and mobile platforms.
 
 Note this is not a general FFT interface, as it handles only real
 signals on the time-domain side.

          
@@ 15,25 15,28 @@ that bqfft does not know how to calculat
 that have been compiled in, a simple slow DFT will be used instead. A
 warning will be printed to stderr if this happens.
 
-Of the available libraries, vDSP, IPP, and the built-in implementation
-support power-of-two FFT lengths only, KissFFT supports any multiple
-of two, and FFTW supports any length. You can compile in more than one
-library, so for example if you compile in Accelerate and KissFFT, the
-former will be used for powers of two and the latter for other even
-lengths.
+Of the available libraries, vDSP, IPP, SLEEF, and the built-in
+implementation support power-of-two FFT lengths only, KissFFT supports
+any multiple of two, and FFTW supports any length. You can compile in
+more than one library, so for example if you compile in Accelerate and
+KissFFT, the former will be used for powers of two and the latter for
+other even lengths.
 
 Here are some other pros and cons of the supported libraries:
 
- * Intel IPP - By far the fastest on actual Intel hardware. Of
-   uncertain benefit with other manufacturers. Not available beyond
-   x86/amd64, not open source.
+ * Intel IPP - The fastest on actual Intel hardware. Of uncertain
+   benefit with other manufacturers. Not available beyond x86/amd64,
+   not open source.
 
- * Apple vDSP - Faster than the open source libraries on all Apple
-   hardware, and provided with the OS. There is seldom any good reason
-   not to use this on Apple platforms.
+ * Apple vDSP - Generally the fastest on all Apple hardware, and
+   provided with the OS. There is seldom any good reason not to use
+   this on Apple platforms.
  
- * FFTW3 - Fastest open source library and portable, but its bulk and
-   GPL licence may be an issue.
+ * SLEEF - Typically very fast, unencumbered, portable, open source
+   vector library; complex and (at the time of writing) rather new.
+ 
+ * FFTW3 - Fast, open source, and portable, but its bulk and GPL
+   licence may be an issue.
  
  * KissFFT - As used here it is single-precision throughout, so it may
    be a good choice for platforms on which double-precision arithmetic

          
@@ 44,7 47,7 @@ Here are some other pros and cons of the
 
  * Built-in implementation - Double precision, so more precise than
    KissFFT, and faster on typical 64-bit desktop and modern mobile
-   hardware. Slower than IPP, vDSP, and FFTW3.
+   hardware. Slower than IPP, vDSP, SLEEF, and FFTW3.
 
 Requires the bqvec library.
 

          
@@ 69,5 72,5 @@ C++ standard required: C++98 (does not u
 
 [![Build status](https://builds.sr.ht/~breakfastquay/bqfft.svg)](https://builds.sr.ht/~breakfastquay/bqfft?)
 
-Copyright 2007-2021 Particular Programs Ltd. See the file COPYING for
+Copyright 2007-2022 Particular Programs Ltd. See the file COPYING for
 (BSD/MIT-style) licence terms.

          
A => build/Makefile.linux.sleef +11 -0
@@ 0,0 1,11 @@ 
+
+FFT_DEFINES		:= -DHAVE_SLEEF
+
+VECTOR_DEFINES		:=
+
+ALLOCATOR_DEFINES 	:= -DHAVE_POSIX_MEMALIGN
+
+THIRD_PARTY_INCLUDES	:= -I/usr/local/include
+THIRD_PARTY_LIBS	:= -L/usr/local/lib -lsleefdft -lsleef
+
+include build/Makefile.inc

          
M src/FFT.cpp +351 -22
@@ 63,6 63,13 @@ 
 #include <fftw3.h>
 #endif
 
+#ifdef HAVE_SLEEF
+extern "C" {
+#include <sleef.h>
+#include <sleefdft.h>
+}
+#endif
+
 #ifdef HAVE_VDSP
 #include <Accelerate/Accelerate.h>
 #endif

          
@@ 73,6 80,7 @@ 
 
 #ifndef HAVE_IPP
 #ifndef HAVE_FFTW3
+#ifndef HAVE_SLEEF
 #ifndef HAVE_KISSFFT
 #ifndef USE_BUILTIN_FFT
 #ifndef HAVE_VDSP

          
@@ 82,6 90,7 @@ 
 #endif
 #endif
 #endif
+#endif
 
 #include <cmath>
 #include <iostream>

          
@@ 1437,6 1446,302 @@ pthread_mutex_t D_FFTW::m_commonMutex = 
 
 #endif /* HAVE_FFTW3 */
 
+#ifdef HAVE_SLEEF
+
+class D_SLEEF : public FFTImpl
+{
+    bool isAligned(const void *ptr) {
+        return ! ((uintptr_t)ptr & 63);
+    }
+    
+public:
+    D_SLEEF(int size) :
+        m_fplanf(0), m_fplani(0), m_fbuf(0), m_fpacked(0),
+        m_dplanf(0), m_dplani(0), m_dbuf(0), m_dpacked(0),
+        m_size(size)
+    {
+    }
+
+    ~D_SLEEF() {
+        if (m_fplanf) {
+            SleefDFT_dispose(m_fplanf);
+            SleefDFT_dispose(m_fplani);
+            Sleef_free(m_fbuf);
+            Sleef_free(m_fpacked);
+        }
+        if (m_dplanf) {
+            SleefDFT_dispose(m_dplanf);
+            SleefDFT_dispose(m_dplani);
+            Sleef_free(m_dbuf);
+            Sleef_free(m_dpacked);
+        }
+    }
+
+    int getSize() const {
+        return m_size;
+    }
+
+    FFT::Precisions
+    getSupportedPrecisions() const {
+        return FFT::SinglePrecision | FFT::DoublePrecision;
+    }
+
+    void initFloat() {
+        if (m_fplanf) return;
+
+        m_fbuf = static_cast<float *>
+            (Sleef_malloc(m_size * sizeof(float)));
+        m_fpacked = static_cast<float *>
+            (Sleef_malloc((m_size + 2) * sizeof(float)));
+
+        m_fplanf = SleefDFT_float_init1d
+            (m_size, m_fbuf, m_fpacked,
+             SLEEF_MODE_FORWARD | SLEEF_MODE_REAL | SLEEF_MODE_ESTIMATE);
+
+        m_fplani = SleefDFT_float_init1d
+            (m_size, m_fpacked, m_fbuf,
+             SLEEF_MODE_BACKWARD | SLEEF_MODE_REAL | SLEEF_MODE_ESTIMATE);
+    }
+
+    void initDouble() {
+        if (m_dplanf) return;
+
+        m_dbuf = static_cast<double *>
+            (Sleef_malloc(m_size * sizeof(double)));
+        m_dpacked = static_cast<double *>
+            (Sleef_malloc((m_size + 2) * sizeof(double)));
+
+        m_dplanf = SleefDFT_double_init1d
+            (m_size, m_dbuf, m_dpacked,
+             SLEEF_MODE_FORWARD | SLEEF_MODE_REAL | SLEEF_MODE_ESTIMATE);
+
+        m_dplani = SleefDFT_double_init1d
+            (m_size, m_dpacked, m_dbuf,
+             SLEEF_MODE_BACKWARD | SLEEF_MODE_REAL | SLEEF_MODE_ESTIMATE);
+    }
+
+    void packFloat(const float *BQ_R__ re, const float *BQ_R__ im) {
+        const float *src[2] = { re, im };
+        v_interleave(m_fpacked, src, 2, m_size/2 + 1);
+    }
+
+    void packDouble(const double *BQ_R__ re, const double *BQ_R__ im) {
+        const double *src[2] = { re, im };
+        v_interleave(m_dpacked, src, 2, m_size/2 + 1);
+    }
+
+    void unpackFloat(float *BQ_R__ re, float *BQ_R__ im) {
+        float *dst[2] = { re, im };
+        v_deinterleave(dst, m_fpacked, 2, m_size/2 + 1);
+    }        
+
+    void unpackDouble(double *BQ_R__ re, double *BQ_R__ im) {
+        double *dst[2] = { re, im };
+        v_deinterleave(dst, m_dpacked, 2, m_size/2 + 1);
+    }        
+
+    void forward(const double *BQ_R__ realIn, double *BQ_R__ realOut, double *BQ_R__ imagOut) {
+        if (!m_dplanf) initDouble();
+        if (isAligned(realIn)) {
+            SleefDFT_double_execute(m_dplanf, realIn, 0);
+        } else {
+            v_copy(m_dbuf, realIn, m_size);
+            SleefDFT_double_execute(m_dplanf, 0, 0);
+        }
+        unpackDouble(realOut, imagOut);
+    }
+
+    void forwardInterleaved(const double *BQ_R__ realIn, double *BQ_R__ complexOut) {
+        if (!m_dplanf) initDouble();
+        if (isAligned(realIn) && isAligned(complexOut)) {
+            SleefDFT_double_execute(m_dplanf, realIn, complexOut);
+        } else {
+            v_copy(m_dbuf, realIn, m_size);
+            SleefDFT_double_execute(m_dplanf, 0, 0);
+            v_copy(complexOut, m_dpacked, m_size + 2);
+        }
+    }
+
+    void forwardPolar(const double *BQ_R__ realIn, double *BQ_R__ magOut, double *BQ_R__ phaseOut) {
+        if (!m_dplanf) initDouble();
+        if (isAligned(realIn)) {
+            SleefDFT_double_execute(m_dplanf, realIn, 0);
+        } else {
+            v_copy(m_dbuf, realIn, m_size);
+            SleefDFT_double_execute(m_dplanf, 0, 0);
+        }
+        v_cartesian_interleaved_to_polar(magOut, phaseOut, m_dpacked, m_size/2+1);
+    }
+
+    void forwardMagnitude(const double *BQ_R__ realIn, double *BQ_R__ magOut) {
+        if (!m_dplanf) initDouble();
+        if (isAligned(realIn)) {
+            SleefDFT_double_execute(m_dplanf, realIn, 0);
+        } else {
+            v_copy(m_dbuf, realIn, m_size);
+            SleefDFT_double_execute(m_dplanf, 0, 0);
+        }
+        v_cartesian_interleaved_to_magnitudes(magOut, m_dpacked, m_size/2+1);
+    }
+
+    void forward(const float *BQ_R__ realIn, float *BQ_R__ realOut, float *BQ_R__ imagOut) {
+        if (!m_fplanf) initFloat();
+        if (isAligned(realIn)) {
+            SleefDFT_float_execute(m_fplanf, realIn, 0);
+        } else {
+            v_copy(m_fbuf, realIn, m_size);
+            SleefDFT_float_execute(m_fplanf, 0, 0);
+        }
+        unpackFloat(realOut, imagOut);
+    }
+
+    void forwardInterleaved(const float *BQ_R__ realIn, float *BQ_R__ complexOut) {
+        if (!m_fplanf) initFloat();
+        if (isAligned(realIn) && isAligned(complexOut)) {
+            SleefDFT_float_execute(m_fplanf, realIn, complexOut);
+        } else {
+            v_copy(m_fbuf, realIn, m_size);
+            SleefDFT_float_execute(m_fplanf, 0, 0);
+            v_copy(complexOut, m_fpacked, m_size + 2);
+        }
+    }
+
+    void forwardPolar(const float *BQ_R__ realIn, float *BQ_R__ magOut, float *BQ_R__ phaseOut) {
+        if (!m_fplanf) initFloat();
+        if (isAligned(realIn)) {
+            SleefDFT_float_execute(m_fplanf, realIn, 0);
+        } else {
+            v_copy(m_fbuf, realIn, m_size);
+            SleefDFT_float_execute(m_fplanf, 0, 0);
+        }
+        v_cartesian_interleaved_to_polar(magOut, phaseOut, m_fpacked, m_size/2+1);
+    }
+
+    void forwardMagnitude(const float *BQ_R__ realIn, float *BQ_R__ magOut) {
+        if (!m_fplanf) initFloat();
+        if (isAligned(realIn)) {
+            SleefDFT_float_execute(m_fplanf, realIn, 0);
+        } else {
+            v_copy(m_fbuf, realIn, m_size);
+            SleefDFT_float_execute(m_fplanf, 0, 0);
+        }
+        v_cartesian_interleaved_to_magnitudes(magOut, m_fpacked, m_size/2+1);
+    }
+
+    void inverse(const double *BQ_R__ realIn, const double *BQ_R__ imagIn, double *BQ_R__ realOut) {
+        if (!m_dplanf) initDouble();
+        packDouble(realIn, imagIn);
+        if (isAligned(realOut)) {
+            SleefDFT_double_execute(m_dplani, 0, realOut);
+        } else {
+            SleefDFT_double_execute(m_dplani, 0, 0);
+            v_copy(realOut, m_dbuf, m_size);
+        }
+    }
+
+    void inverseInterleaved(const double *BQ_R__ complexIn, double *BQ_R__ realOut) {
+        if (!m_dplanf) initDouble();
+        if (isAligned(complexIn) && isAligned(realOut)) {
+            SleefDFT_double_execute(m_dplani, complexIn, realOut);
+        } else {            
+            v_copy(m_dpacked, complexIn, m_size + 2);
+            SleefDFT_double_execute(m_dplani, 0, 0);
+            v_copy(realOut, m_dbuf, m_size);
+        }
+    }
+
+    void inversePolar(const double *BQ_R__ magIn, const double *BQ_R__ phaseIn, double *BQ_R__ realOut) {
+        if (!m_dplanf) initDouble();
+        v_polar_to_cartesian_interleaved(m_dpacked, magIn, phaseIn, m_size/2+1);
+        if (isAligned(realOut)) {
+            SleefDFT_double_execute(m_dplani, 0, realOut);
+        } else {
+            SleefDFT_double_execute(m_dplani, 0, 0);
+            v_copy(realOut, m_dbuf, m_size);
+        }
+    }
+
+    void inverseCepstral(const double *BQ_R__ magIn, double *BQ_R__ cepOut) {
+        if (!m_dplanf) initDouble();
+        const int hs = m_size/2;
+        for (int i = 0; i <= hs; ++i) {
+            m_dpacked[i*2] = log(magIn[i] + 0.000001);
+            m_dpacked[i*2+1] = 0.0;
+        }
+        if (isAligned(cepOut)) {
+            SleefDFT_double_execute(m_dplani, 0, cepOut);
+        } else {
+            SleefDFT_double_execute(m_dplani, 0, 0);
+            v_copy(cepOut, m_dbuf, m_size);
+        }
+    }
+
+    void inverse(const float *BQ_R__ realIn, const float *BQ_R__ imagIn, float *BQ_R__ realOut) {
+        if (!m_fplanf) initFloat();
+        packFloat(realIn, imagIn);
+        if (isAligned(realOut)) {
+            SleefDFT_float_execute(m_dplani, 0, realOut);
+        } else {
+            SleefDFT_float_execute(m_fplani, 0, 0);
+            v_copy(realOut, m_fbuf, m_size);
+        }
+    }
+
+    void inverseInterleaved(const float *BQ_R__ complexIn, float *BQ_R__ realOut) {
+        if (!m_fplanf) initFloat();
+        if (isAligned(complexIn) && isAligned(realOut)) {
+            SleefDFT_float_execute(m_fplani, complexIn, realOut);
+        } else {
+            v_copy(m_fpacked, complexIn, m_size + 2);
+            SleefDFT_float_execute(m_fplani, 0, 0);
+            v_copy(realOut, m_fbuf, m_size);
+        }
+    }
+
+    void inversePolar(const float *BQ_R__ magIn, const float *BQ_R__ phaseIn, float *BQ_R__ realOut) {
+        if (!m_fplanf) initFloat();
+        v_polar_to_cartesian_interleaved(m_fpacked, magIn, phaseIn, m_size/2+1);
+        if (isAligned(realOut)) {
+            SleefDFT_float_execute(m_fplani, 0, realOut);
+        } else {
+            SleefDFT_float_execute(m_fplani, 0, 0);
+            v_copy(realOut, m_fbuf, m_size);
+        }
+    }
+
+    void inverseCepstral(const float *BQ_R__ magIn, float *BQ_R__ cepOut) {
+        if (!m_fplanf) initFloat();
+        const int hs = m_size/2;
+        for (int i = 0; i <= hs; ++i) {
+            m_fpacked[i*2] = logf(magIn[i] + 0.000001f);
+            m_fpacked[i*2+1] = 0.0;
+        }
+        if (isAligned(cepOut)) {
+            SleefDFT_float_execute(m_fplani, 0, cepOut);
+        } else {
+            SleefDFT_float_execute(m_fplani, 0, 0);
+            v_copy(cepOut, m_fbuf, m_size);
+        }
+    }
+
+private:
+    SleefDFT *m_fplanf;
+    SleefDFT *m_fplani;
+
+    float *m_fbuf;
+    float *m_fpacked;
+    
+    SleefDFT *m_dplanf;
+    SleefDFT *m_dplani;
+
+    double *m_dbuf;
+    double *m_dpacked;
+    
+    const int m_size;
+};
+
+#endif /* HAVE_SLEEF */
+
 #ifdef HAVE_KISSFFT
 
 class D_KISSFFT : public FFTImpl

          
@@ 2278,6 2583,9 @@ getImplementationDetails()
 #ifdef HAVE_FFTW3
     impls["fftw"] = SizeConstraintNone;
 #endif
+#ifdef HAVE_SLEEF
+    impls["sleef"] = SizeConstraintEvenPowerOfTwo;
+#endif
 #ifdef HAVE_KISSFFT
     impls["kissfft"] = SizeConstraintEven;
 #endif

          
@@ 2322,7 2630,7 @@ pickImplementation(int size)
     } 
     
     std::string preference[] = {
-        "ipp", "vdsp", "fftw", "builtin", "kissfft"
+        "ipp", "vdsp", "sleef", "fftw", "builtin", "kissfft"
     };
 
     for (int i = 0; i < int(sizeof(preference)/sizeof(preference[0])); ++i) {

          
@@ 2403,6 2711,10 @@ FFT::FFT(int size, int debugLevel) :
 #ifdef HAVE_FFTW3
         d = new FFTs::D_FFTW(size);
 #endif
+    } else if (impl == "sleef") {
+#ifdef HAVE_SLEEF
+        d = new FFTs::D_SLEEF(size);
+#endif
     } else if (impl == "kissfft") {        
 #ifdef HAVE_KISSFFT
         d = new FFTs::D_KISSFFT(size);

          
@@ 2661,6 2973,14 @@ FFT::tune()
         d->initDouble();
         candidates["fftw"] = d;
 #endif
+        
+#ifdef HAVE_SLEEF
+        os << "Constructing new SLEEF FFT object for size " << size << "..." << std::endl;
+        d = new FFTs::D_SLEEF(size);
+        d->initFloat();
+        d->initDouble();
+        candidates["sleef"] = d;
+#endif
 
 #ifdef HAVE_KISSFFT
         os << "Constructing new KISSFFT object for size " << size << "..." << std::endl;

          
@@ 2705,19 3025,21 @@ FFT::tune()
         int iterations = 500;
         os << "Iterations: " << iterations << std::endl;
 
-        double *da = new double[size];
-        double *db = new double[size];
-        double *dc = new double[size];
-        double *dd = new double[size];
-        double *di = new double[size + 2];
-        double *dj = new double[size + 2];
-
-        float *fa = new float[size];
-        float *fb = new float[size];
-        float *fc = new float[size];
-        float *fd = new float[size];
-        float *fi = new float[size + 2];
-        float *fj = new float[size + 2];
+        double *da = allocate_and_zero<double>(size);
+        double *db = allocate_and_zero<double>(size);
+        double *dc = allocate_and_zero<double>(size);
+        double *dd = allocate_and_zero<double>(size);
+
+        double *di = allocate_and_zero<double>(size + 2);
+        double *dj = allocate_and_zero<double>(size + 2);
+
+        float *fa = allocate_and_zero<float>(size);
+        float *fb = allocate_and_zero<float>(size);
+        float *fc = allocate_and_zero<float>(size);
+        float *fd = allocate_and_zero<float>(size);
+
+        float *fi = allocate_and_zero<float>(size + 2);
+        float *fj = allocate_and_zero<float>(size + 2);
 
         for (int type = 0; type < 16; ++type) {
     

          
@@ 2846,15 3168,22 @@ FFT::tune()
 
             wins[low]++;
         }
+
+        deallocate(da);
+        deallocate(db);
+        deallocate(dc);
+        deallocate(dd);
+
+        deallocate(di);
+        deallocate(dj);
         
-        delete[] fa;
-        delete[] fb;
-        delete[] fc;
-        delete[] fd;
-        delete[] da;
-        delete[] db;
-        delete[] dc;
-        delete[] dd;
+        deallocate(fa);
+        deallocate(fb);
+        deallocate(fc);
+        deallocate(fd);
+
+        deallocate(fi);
+        deallocate(fj);
     }
 
     while (!candidates.empty()) {

          
M test/TestFFT.cpp +2 -1
@@ 112,13 112,14 @@ BOOST_AUTO_TEST_SUITE(TestFFT)
     ONE_IMPL_AUTO_TEST_CASE(name, ipp); \
     ONE_IMPL_AUTO_TEST_CASE(name, vdsp); \
     ONE_IMPL_AUTO_TEST_CASE(name, fftw); \
+    ONE_IMPL_AUTO_TEST_CASE(name, sleef); \
     ONE_IMPL_AUTO_TEST_CASE(name, kissfft); \
     ONE_IMPL_AUTO_TEST_CASE(name, builtin); \
     ONE_IMPL_AUTO_TEST_CASE(name, dft); \
     void performTest_##name ()
 
 std::string all_implementations[] = {
-    "ipp", "vdsp", "fftw", "kissfft", "builtin", "dft"
+    "ipp", "vdsp", "fftw", "sleef", "kissfft", "builtin", "dft"
 };
 
 BOOST_AUTO_TEST_CASE(showImplementations)