# HG changeset patch # User Benedikt Fluhr # Date 1445636619 -7200 # Fri Oct 23 23:43:39 2015 +0200 # Node ID f832c5223a7dfc0ff3b027a3144b03e615cd916a # Parent 1ac0ccce2566c4671fd874a1cbb4202730fdf78f Counterexample to hom(_, A) being full diff --git a/00_00_00_macros.tex b/00_00_00_macros.tex --- a/00_00_00_macros.tex +++ b/00_00_00_macros.tex @@ -1,5 +1,6 @@ \newcommand{\id}{\operatorname{id}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} +\newcommand{\N}{\mathbb{N}} \newcommand{\set}[3]{\{#1 \in #2 ~|~ #3\}} \newcommand{\colim}{\operatorname{colim}} diff --git a/06_fromSetsToAlgebras.md b/06_fromSetsToAlgebras.md --- a/06_fromSetsToAlgebras.md +++ b/06_fromSetsToAlgebras.md @@ -70,6 +70,34 @@ With this definition we have $\varphi = \hom(m, A)$ since the two maps agree on a basis of $\hom(K, A)$. +The following example shows that we cannot assume +the unrestricted functor +$\hom(\_, A)$ to be full, if $A$ is a general ring. + +* *Example.* +We consider $\hom (\N, \Z / p \Z)$. +Let $\mathfrak{a}$ be the ideal of all $c \in \hom (\N, \Z / p \Z)$ with +$c^{-1} (0)$ cofinite. +By [Krull's theorem](https://en.wikipedia.org/wiki/Krull's_theorem) +$\hom (\N, \Z / p \Z)$ has a maximal ideal $\mathfrak{m}$ with +$\mathfrak{a} \subset \mathfrak{m}$ and this gives +a homomorphism of fields +$i \colon \Z / p \Z \rightarrow \hom (\N, \Z / p \Z) / \mathfrak{m}$. +We further have +$[c]^p - [c] = [c^p - c] = 0$ +for all $[c] \in \hom (\N, \Z / p \Z) / \mathfrak{m}$ and +as $X^p - X$ is a polynomial of degree $p$ it has at most $p$ roots in +$\hom (\N, \Z / p \Z) / \mathfrak{m}$ and thus $i$ is a bijection. +Now the canonical homomorphism from $\hom (\N, \Z / p \Z)$ to the quotient +$\hom (\N, \Z / p \Z) / \mathfrak{m}$ yields a homomorphism +$\varphi \colon \hom (\N, \Z / p \Z) \rightarrow +\hom(\{1\}, \Z / p \Z) \cong \Z / p \Z$ +which is not in the image of $\hom(\_, \Z / p \Z)$, +since for any map +$m \colon \{1\} \rightarrow \N$ the element +$1_{m(1)} \in \mathfrak{a} \subset \mathfrak{m}$ is mapped to +$1 \in \Z / p \Z$ under $\hom(m, \Z / p \Z)$. + * **Lemma.** $\hom(\_, A)$ is continuous as a functor from the opposed category of sets to the category of $A$-algebras.