# HG changeset patch # User Benedikt Fluhr # Date 1503318826 -7200 # Mon Aug 21 14:33:46 2017 +0200 # Node ID c94ee4e0161216e1bfde11d4f70c73badfa37056 # Parent d8d0d68546ae37de5189622cff1ba10c6397f326 Added File forgotten with last Commit diff --git a/joinPrecosheaf.md b/joinPrecosheaf.md new file mode 100644 --- /dev/null +++ b/joinPrecosheaf.md @@ -0,0 +1,89 @@ +In the section +[Equivalence to descending Precosheaf][] +we discussed the $\overline{\E}$-category of +precosheaves on $\overline{\R}_{-\infty}$ +with smoothing functor $\overline{\mathcal{S}}$ +and the $1$-homomorphism $\pi^2_*$ from +the $D$-category of precosheaves on $\overline{D}$. +Together with $\mathcal{C}$ and $\tilde{\mathcal{C}}$ we obtain +the functor $\pi^2_* \circ \mathcal{C}$ with the positive +persistence-enhancement $\pi^2_* \circ \tilde{\mathcal{C}}$. +And this is pretty much the precosheaf-theoretical version of the join tree +introduced by @bubenik2014[example 1.2.3]. +We name $\pi^2_* \circ \mathcal{C}$ the *join precosheaf*. +With $\pi^2_*$ being a $1$-homomorphism we conclude +from corollary @1HomLowerBd that the interleaving distances +of join precosheaves provide lower bounds to the corresponding distances +of Reeb precosheaves. +Now we will see that this join precosheaf is indeed closely +related to the other versions of join trees we have seen. +We start with a self-contained description of a complete +persistence-enhancement for $\pi^2_* \circ \mathcal{C}$ +extending $\pi^2_* \circ \tilde{\mathcal{C}}$. +To this end let $f \colon X \rightarrow \R$ +and $g \colon Y \rightarrow \R$ be continuous functions +and let $(a, b), (c, d) \in \overline{\mathbb{E}}$. +We set +$\widetilde{(\pi^2_* \circ \mathcal{C})}((f, (a, b))) := +(s^{-b} \circ \pi^2 \circ \Delta \circ f)_* \Lambda$. +Now let +$\varphi \colon (f, (a, b)) \rightarrow (g, (c, d))$ +be a homomorphism in $\pm \mathbf{F}$ +and let $U \subseteq \overline{\R}_{-\infty}$ be an open subset, +then we have +$\varphi((s^{-b} \circ \pi^2 \circ \Delta \circ f)^{-1} (U)) = +\varphi((s^{-b} \circ f)^{-1} (U)) \subseteq +\varphi((s^{-d} \circ f)^{-1} (U))$ +and thus the restriction +$\varphi |_{(s^{-b} \circ f)^{-1} (U)} \colon +(s^{-b} \circ f)^{-1} (U) \rightarrow (s^{-d} \circ f)^{-1} (U)$. +We set +$\widetilde{(\pi^2_* \circ \mathcal{C})}(\varphi)_U := +\Lambda \big( \varphi |_{(s^{-b} \circ f)^{-1} (U)} \big)$. + +* **Lemma.** +We have +$\widetilde{(\pi^2_* \circ \mathcal{C})} |_{\mathbf{F}} = +\pi^2_* \circ \tilde{C}$. + +So the positive persistence-enhancement we get from +$\widetilde{(\pi^2_* \circ \mathcal{C})}$ coincides with +$\pi^2_* \circ \tilde{C}$. +Now we examine the negative persistence-enhancement +$\widetilde{(\pi^2_* \circ \mathcal{C})} |_{(-\mathbf{F})}$ +and how it relates to +$\pi^2_* \circ \mathcal{C} \circ \tilde{\mathcal{E}}$. + +* **Lemma.** +The homomorphism +$(\pi^2_* \circ \mathcal{C} \circ \kappa)_f$ +is an isomorphism from +$(\pi^2_* \circ \mathcal{C})(f)$ to +$(\pi^2_* \circ \mathcal{C} \circ \mathcal{E})(f)$. + +The proof of this lemma is similar to the proof of lemma @etaCEIso. + +* **Corollary.** +The interleavings of +$(\pi^2_* \circ \mathcal{C})(f)$ and +$(\pi^2_* \circ \mathcal{C})(g)$ +are in bijection to those of +$(\pi^2_* \circ \mathcal{C} \circ \mathcal{E})(f)$ and +$(\pi^2_* \circ \mathcal{C} \circ \mathcal{E})(g)$. + +This corollary already captures what we care about +most of the time, but we might also like to know +whether the interleavings that we get from interleavings in +$-\mathbf{F}$ are preserved by this bijection. +An affirmative answer is provided by remark @combine2Hom and the following + +* **Lemma.** +The functors +$\overline{\mathcal{S}}$, +$\widetilde{(\pi^2_* \circ \mathcal{C})} |_{(-\mathbf{F})}$, +and +$\pi^2_* \circ \mathcal{C} \circ \tilde{\mathcal{E}}$ +combine to a negative persistence-enhancement for +$\pi^2_* \circ \mathcal{C} \circ \kappa$. + +The proof of this lemma is similar to the proof of lemma @shiftDescJoinTree.