# HG changeset patch # User Benedikt Fluhr # Date 1497839097 -7200 # Mon Jun 19 04:24:57 2017 +0200 # Node ID f703c96ee5ea60295b051becc7e5b5cd14eb7ef5 # Parent 351059c72074d939649d10f568f83101e3806f79 Proof of Compatibility Lemma diff --git a/00_12_EqualityOfInterlDist.md b/00_12_EqualityOfInterlDist.md --- a/00_12_EqualityOfInterlDist.md +++ b/00_12_EqualityOfInterlDist.md @@ -29,6 +29,7 @@ (@CpiEIso) **Lemma.** The homomorphism $(\mathcal{C} \circ \pi \circ \mathcal{E})_f$ +from $\mathcal{C} \mathcal{E} f$ to $\mathcal{C} \mathcal{R} \mathcal{E} f$ is an isomorphism of precosheaves. Now $\mathbf{C}$ is closed under isomorphisms and thus also @@ -37,7 +38,7 @@ We note that for any continuous function $g \colon Y \rightarrow (-\infty, \infty]$ and $r \in (-\infty, \infty]$ we have -$r + g = \mathcal{S}((-r, -r)) (g)$ +$r + g = \mathcal{S}((\infty, -r)) (g)$ by definition of $\mathcal{S}$. We now recall that we also defined the endofunctors associated to the smoothing functor @@ -71,6 +72,38 @@ (\pi^2_* \circ \mathcal{C} \circ \mathcal{S}(\mathbf{a} \preceq \mathbf{b}) \circ \mathcal{E})_f$. +* *Proof.* +First we set $(a', a) := \mathbf{a}$ and $(b', b) := \mathbf{b}$. +Now let $r \in \R$. +If we unravel the definitions we obtain +$(\overline{\mathcal{S}}(\mathbf{a}) \pi^2_* \mathcal{C} \mathcal{E} f)( + [-\infty, r) + ) = + \Lambda(\epi f \cap X \times [-\infty, r + a))$ +and +$(\overline{\mathcal{S}}(\mathbf{b}) \pi^2_* \mathcal{C} \mathcal{E} f)( + [-\infty, r) + ) = + \Lambda(\epi f \cap X \times [-\infty, r + b))$. +Let $i$ be the inclusion of $\epi f \cap X \times [-\infty, r + a)$ +into $\epi f \cap X \times [-\infty, r + b)$ +and let +$\tau \colon \epi f \cap X \times [-\infty, r + a) \rightarrow + \epi f \cap X \times [-\infty, r + b), + (p, t) \mapsto (p, t - a + b)$, +then +$(\overline{\mathcal{S}}(\mathbf{a} \preceq \mathbf{b}) \circ + \pi^2_* \circ \mathcal{C} \circ \mathcal{E})_{f [-\infty, r)} = \Lambda(i)$ +and +$(\pi^2_* \circ \mathcal{C} \circ \mathcal{S}(\mathbf{a} \preceq \mathbf{b}) + \circ \mathcal{E})_{f [-\infty, r)} = \Lambda(\tau)$. +Now let $(p, t) \in \epi f \cap X \times [-\infty, r + a)$, +then $\{p\} \times [t, t - a + b]$ is contained in +$\epi f \cap X \times [-\infty, r + b)$. +Moreover we have +$(p, t), (p, t - a + b) \in \{p\} \times [t, t - a + b]$, +hence $\Lambda(i) = \Lambda(\tau)$. + * **Corollary.** We have $(\mathcal{S}'(\mathbf{a} \preceq \mathbf{b}) \circ