M 00_09_extPersistenceEnhancements.md => 00_09_complPersistenceEnhancements.md +3 -4
@@ 1,4 1,4 @@
-# Extended Persistence Enhancements
+# Complete Persistence Enhancements
In the previous section we defined positive persistence enhancements
of functor on $\R$-spaces and provided one for $\mathcal{C}$,
@@ 121,7 121,6 @@ with the interleavings of $A$ and $B$ wi
Homomorphisms of $-D$- and $\Ec$-categories are defined completely
analogously to those of $D$-categories.
-Now we provide a negative and extended version of $\mathbf{F}$.
* **Definition.**
Here we define the categories $-\mathbf{F}$ and $\pm \mathbf{F}$.
@@ 143,12 142,12 @@ Whenever there is any ambiguity interpre
of this inequality, we interpret it as $-\infty$, for the right-hand side
as $\infty$.
-Next we define negative and extended persistence-enhancements.
+Next we define negative and complete persistence-enhancements.
To this end let $F$ be a functor from the category of $\R$-spaces
to some category $\mathbf{C}$.
* **Definition.**
-A *negative* respectively a *extended persistence-enhancement of $F$*
+A *negative* respectively a *complete persistence-enhancement of $F$*
is the structure of a strict $-D$-category respectively $\Ec$-category on
$\mathbf{C}$ together with a $1$-homomorphism $\tilde{F}$ from
$-\mathbf{F}$ resepctively $\pm \mathbf{F}$
M 00_10_someEquivalences.md +1 -1
@@ 292,7 292,7 @@ we gave the category of set-valued preco
$\overline{\R}_{-\infty}$
the structure of an $\Ec$-category.
So by lemma @pmDEquiv, from the section on
-[extended persistence enhancements][],
+[complete persistence enhancements][],
the interleavings of
$\mathcal{C} \mathcal{E} f$ and $\mathcal{C} \mathcal{E} g$
with respect to the $-D$-category structure given by