M bib/hunter07.bib +1 -1
@@ 1,6 1,6 @@
@Article{hunter2007,
Author = {Hunter, J. D.},
- Title = {Matplotlib: A 2D graphics environment},
+ Title = {Matplotlib: A 2{D} graphics environment},
Journal = {Computing In Science \& Engineering},
Volume = {9},
Number = {3},
M joinTrees.md +3 -3
@@ 115,13 115,13 @@ We consider the join trees from the prev
We set
$\varphi \colon
\pi_{\mathcal{E} f} (\epi f) \rightarrow \pi_{\mathcal{E} g} (\epi g),
- \pi_{\mathcal{E} f} ((x, y)) \mapsto \pi_{\mathcal{E} g} ((-3, y + 1))$
+ \pi_{\mathcal{E} f} ((x, y)) \mapsto \pi_{\mathcal{E} g} ((-3, y + 2))$
and
$\psi \colon
\pi_{\mathcal{E} g} (\epi g) \rightarrow \pi_{\mathcal{E} f} (\epi f),
- \pi_{\mathcal{E} g} ((x, y)) \mapsto \pi_{\mathcal{E} f} ((-3, y + 1))$,
+ \pi_{\mathcal{E} g} ((x, y)) \mapsto \pi_{\mathcal{E} f} ((-3, y + 2))$,
then $\varphi$ and $\psi$ form a
-$(1, 1)$-interleaving of
+$(2, 2)$-interleaving of
$\mathcal{R} \mathcal{E} f$ and $\mathcal{R} \mathcal{E} g$.
With interleavings defined we can define the interleaving distances.
M meta.yaml +2 -2
@@ 1,4 1,4 @@
---
-title: Homological Aspects of Persistence
-link-citations: true
+nocite: |
+ @hunter2007
...
M struct.yaml +1 -0
@@ 1,4 1,5 @@
files:
+- meta.yaml
- macros.tex
- links.md
sections: