M 00_03_joinTrees.md +3 -3
@@ 31,17 31,17 @@ Let
$g \colon \big[-3, 3 + \frac{1}{4}\big] \rightarrow \R, x \mapsto 6x$.
The following image shows the graphs of $f$ and $g$.
- ![The graphs of $f$ and $g$](img/2functions-plot.pdf)\
+ ![The graphs of $f$ and $g$](img/mpl/2functions-plot)\
The next image shows the corresponding epigraphs.
- ![The epigraphs of $f$ and $g$](img/2functions-epigraph.pdf)\
+ ![The epigraphs of $f$ and $g$](img/mpl/2functions-epigraph)\
And a visualization of their join trees,
i.e. the Reeb graphs of their epigraphs,
is shown in the image below.
- ![The join trees of $f$ and $g$](img/2functions-join-trees.pdf)\
+ ![The join trees of $f$ and $g$](img/mpl/2functions-join-trees)\
Before we get to interleavings we make some auxiliary definitions.
M 04_RGraphs.md +1 -1
@@ 33,7 33,7 @@ If $X$ is the $\{a_1, a_2, a_3\}$-skelet
in example @constructible-example,
then the following image shows $\mathcal{C} X$.
- ![$\mathcal{C} X$](img/pi0-of-constructible-example.pdf)\
+ ![$\mathcal{C} X$](img/mpl/pi0-of-constructible-example)\
Now let $S = \{a_1 < a_2 < \dots < a_n\} \subset \R$ for some
non-negative integer $n$.
M 06_interleavingGraphs.md +1 -1
@@ 34,7 34,7 @@ A picture of $\mathcal{C} X$ is shown in
In the following image we depict the sets $V_{0 3}$ and $V_{0 4}$.
![Partial visualization of $\Delta_* \mathcal{C}' X$](
- img/push-example-delta.pdf)\
+ img/mpl/push-example-delta)\
The left graphic shows the two
connected components of the multigraph with vertices $V_1 \coprod V_2$
M 99_02_constructibleRSpaces.md +1 -1
@@ 46,7 46,7 @@ The following image depicts the geometri
and the associated height function of an
$\{a_1, a_2, a_3\}$-skeleton for an $\overline{\R}$-space.
- ![The geometric realization of an $\{a_1, a_2, a_3\}$-skeleton](img/constructible-example.pdf)\
+ ![The geometric realization of an $\{a_1, a_2, a_3\}$-skeleton](img/mpl/constructible-example)\
Now let $S = \{a_1 < a_2 < \dots < a_n\} \subset \R$ for some
non-negative integer $n$
M 99_03_RGraphs.md +1 -1
@@ 33,7 33,7 @@ If $X$ is the $\{a_1, a_2, a_3\}$-skelet
in example @constructible-example,
then the following image shows $\mathcal{C} X$.
- ![$\mathcal{C} X$](img/pi0-of-constructible-example.pdf)\
+ ![$\mathcal{C} X$](img/mpl/pi0-of-constructible-example)\
Now let $S = \{a_1 < a_2 < \dots < a_n\} \subset \R$ for some
non-negative integer $n$.
M 99_04_skeletenEpigraph.md +1 -1
@@ 22,7 22,7 @@ The left graphic in the following pictur
$\{a_1, a_2, a_3\}$-skeleton for a bounded $\R$-space,
by augmenting the sets of vertices and edges with the discrete topology.
- ![Example for an epigraph.](img/example-epigraph.pdf)\
+ ![Example for an epigraph.](img/mpl/example-epigraph)\
We ignore the colors for now.
The right graphic shows the corresponding epigraph.
A => img/mpl-htaccess +1 -0
@@ 0,0 1,1 @@
+ForceType image/svg+xml