45765fa1bd78 — Benedikt Fluhr <http://bfluhr.com> 7 years ago
Integrated Images into 'build-script'
M 00_03_joinTrees.md +3 -3
@@ 31,17 31,17 @@ Let
 $g \colon \big[-3, 3 + \frac{1}{4}\big] \rightarrow \R, x \mapsto 6x$.
 The following image shows the graphs of $f$ and $g$.
 
-    ![The graphs of $f$ and $g$](img/2functions-plot.pdf)\ 
+    ![The graphs of $f$ and $g$](img/mpl/2functions-plot)\ 
 
     The next image shows the corresponding epigraphs.
 
-    ![The epigraphs of $f$ and $g$](img/2functions-epigraph.pdf)\ 
+    ![The epigraphs of $f$ and $g$](img/mpl/2functions-epigraph)\ 
 
     And a visualization of their join trees,
 i.e. the Reeb graphs of their epigraphs,
 is shown in the image below.
 
-    ![The join trees of $f$ and $g$](img/2functions-join-trees.pdf)\ 
+    ![The join trees of $f$ and $g$](img/mpl/2functions-join-trees)\ 
 
 Before we get to interleavings we make some auxiliary definitions.
 

          
M 04_RGraphs.md +1 -1
@@ 33,7 33,7 @@ If $X$ is the $\{a_1, a_2, a_3\}$-skelet
 in example @constructible-example,
 then the following image shows $\mathcal{C} X$.
 
-    ![$\mathcal{C} X$](img/pi0-of-constructible-example.pdf)\ 
+    ![$\mathcal{C} X$](img/mpl/pi0-of-constructible-example)\ 
 
 Now let $S = \{a_1 < a_2 < \dots < a_n\} \subset \R$ for some
 non-negative integer $n$.

          
M 06_interleavingGraphs.md +1 -1
@@ 34,7 34,7 @@ A picture of $\mathcal{C} X$ is shown in
 In the following image we depict the sets $V_{0 3}$ and $V_{0 4}$.
 
     ![Partial visualization of $\Delta_* \mathcal{C}' X$](
-    img/push-example-delta.pdf)\ 
+    img/mpl/push-example-delta)\ 
 
     The left graphic shows the two
     connected components of the multigraph with vertices $V_1 \coprod V_2$

          
M 99_02_constructibleRSpaces.md +1 -1
@@ 46,7 46,7 @@ The following image depicts the geometri
 and the associated height function of an
 $\{a_1, a_2, a_3\}$-skeleton for an $\overline{\R}$-space.
 
-    ![The geometric realization of an $\{a_1, a_2, a_3\}$-skeleton](img/constructible-example.pdf)\ 
+    ![The geometric realization of an $\{a_1, a_2, a_3\}$-skeleton](img/mpl/constructible-example)\ 
 
 Now let $S = \{a_1 < a_2 < \dots < a_n\} \subset \R$ for some
 non-negative integer $n$

          
M 99_03_RGraphs.md +1 -1
@@ 33,7 33,7 @@ If $X$ is the $\{a_1, a_2, a_3\}$-skelet
 in example @constructible-example,
 then the following image shows $\mathcal{C} X$.
 
-    ![$\mathcal{C} X$](img/pi0-of-constructible-example.pdf)\ 
+    ![$\mathcal{C} X$](img/mpl/pi0-of-constructible-example)\ 
 
 Now let $S = \{a_1 < a_2 < \dots < a_n\} \subset \R$ for some
 non-negative integer $n$.

          
M 99_04_skeletenEpigraph.md +1 -1
@@ 22,7 22,7 @@ The left graphic in the following pictur
 $\{a_1, a_2, a_3\}$-skeleton for a bounded $\R$-space,
 by augmenting the sets of vertices and edges with the discrete topology.
 
-    ![Example for an epigraph.](img/example-epigraph.pdf)\ 
+    ![Example for an epigraph.](img/mpl/example-epigraph)\ 
 
     We ignore the colors for now.
     The right graphic shows the corresponding epigraph.

          
A => img/mpl-htaccess +1 -0
@@ 0,0 1,1 @@ 
+ForceType image/svg+xml